

Programming Lego MINDSTORMS Robots

using NI LabVIEW®

Author: Pooyan Nayyeri

Translation to English: Pooyan Nayyeri & Mahbod Tajdini

https://pnnayyeri.github.io/
https://pnnayyeri.github.io/
mailto:mahbodtajdini@gmail.com

ii

Contents
Preface .. 1

1. An Introduction to LabVIEW ... 2

An Intro to LabVIEW ... 3

Start Programming with LabVIEW .. 3

Front Panel and Block Diagram Windows ... 4

Intro to Virtual Instruments (VI) ... 5

Making a Simple Program .. 6

Data Type .. 10

Numerical Data ... 10

Binary Data ... 12

Array Data ... 13

Index Array ... 19

Structures and Loops ... 20

For loop ... 20

While Loop ... 21

Shift register .. 22

Case structure .. 23

Flat Sequence .. 24

Chapter 1 – Problem Set ... 25

2. Programming Mindstorms .. 26

An Intro to the Mindstorms Module ... 27

Mindstorms EV3 Components .. 35

EV3 Brick ... 35

Motors ... 38

Commanding Motors .. 39

Motor Applications ... 46

Touch Sensor .. 52

Reading Touch Sensor .. 52

Touch Sensor Applications ... 54

Ultrasonic Sensor .. 60

Reading Ultrasonic Sensor .. 60

Ultrasonic calibration .. 61

Ultrasonic Sensor Applications ... 64

Gyroscope Sensor ... 70

iii

Reading Gyro Sensor .. 70

Color/Light Sensor .. 78

Reading Color/Light Sensor.. 78

Color/Light Sensor Calibration ... 81

Color/Light Sensor Applications .. 82

Simple Algorithm .. 85

Proportional Algorithm ... 87

Chapter 2 – Problem Set ... 89

3. Advanced MINDSTORMS Programming .. 92

Introduction ... 93

Color Sorter Robot .. 94

Color Sorter Robot – Problem Set .. 104

Robot Arm .. 105

Controlling Z-axis Rotation .. 107

Controlling Y-axis Rotation .. 111

Gripper Motion ... 114

Final Program of Robot Arm .. 117

Robot Arm – Problem Set ... 117

1

Preface

Robotics is a cool topic and Lego MINDSTORMS is the easiest way to program a real robot without getting

your hands dirty with all electronics and mechanical challenges. I wrote this book on 2018 originally in

Persian, while I was instructing a course on the same subject of this book at the robotics engineering center,

located at the University of Tehran. Right now, Lego MINDSTORMS robots are no longer available for

purchase (which is very disappointing since there is no proper alternative for them). However, I decided to

translate this book to English to provide a good resource for programming MINDSTORMS robots using

NI LabVIEW.

I hope you find it useful for your projects and in your learning journey. You can always contact me via

email (pnnayyeri@gmail.com) to discuss anything related or unrelated to this book.

Pooyan

Spring 2022

mailto:pnnayyeri@gmail.com

2

Chapter 1
An Introduction to LabVIEW

1. An Introduction to LabVIEW

3

AN INTRO TO LABVIEW

LabVIEW software is developed by National Instruments. This software is known with a graphic

programming language (G1) allowing users, including engineers, to create complex programs. The name

of the program stands for Laboratory Virtual Instrument Engineering Workbench. The primary purpose

of developing this software is to build and design control and measurement systems by engineers and

scientists.

Any program coded in LabVIEW is called a VI or Virtual Instrument. Each VI consists of three parts:

Block Diagram, Front Panel, and Connector Panel.

Front Panel or the user interface contains controls and indicators of the program. Controls are the inputs

from the user to the program, and Indicators are the outputs displayed in the form of numbers or symbols.

Behind the scenes of this panel is the main program or Block Diagram, which is the central part of the

VI. In this section, various functions and commands are connected in blocks to determine the process and

purpose of the program. All controls and indicators in the Front Panel have links in the Block Diagram

section, called Terminals, and thus communicate with the core of the program. The blocks in this section

receive the input from the Front Panel, and after processing them, transfer the result to the Front Panel.

Finally, in the Connector Panel section, a VI can be used as a block in the Block Diagram of another

VIs.

In fact, it can be said that a VI or virtual instrument is like a real instrument. Take a computer, for

example. All the buttons on the keyboard and mouse, and any other input on this computer, are the Front

Panel, which is provided directly to the user. Also, the screen, speakers and lights on the computer are

part of the Front Panel because they show the computer's output to the user. Other parts of this computer

are hidden from the user. The user does not deal directly with them and only performs mathematical and

logical processing, and operations such as motherboard, GPU, RAM, CPU, etc., belong to the Block

Diagram section.

Moreover, suppose we connect this computer to another device or computer. In that case, we have

provided the input and output of this computer to other computers, which is the function of the

Connector Panel. So just as all the physical instruments somehow include these three parts, every VI

also includes these three parts.

Start Programming with LabVIEW
To start working with the LabVIEW program, after installing the software on your system, we can run the

software from the shortcut created on the desktop or the Start menu:

1 It differs from the g-code programming language

4

The first window that appears after running the software is the main page which is as follows:

In this window, you can define a new project or reopen previous projects. Each project can contain

multiple VIs. To start building the program, go to File → New NXT/EV3 → Targeted VI from the menu

on the top and click on it. Now the two windows Front Panel and Block Diagram related to the created

VI are displayed.

Front Panel and Block Diagram Windows
The Graphical User Interface (GUI) is displayed in the Front Panel window. As the name implies, you

can receive inputs from the user and display outputs to him/her using the built-in tool in this section.

Inputs and outputs can be in a numerical, binary, string, and so on. In this software, the inputs that are

taken from the user are called Control, and the outputs that are displayed to the user are called

Indicators.

As mentioned, the Front Panel window is the only interface between the user and the program. Therefore,

the Block Diagram window is used to develop a program.

Figure 1 LabVIEW software icon

Figure 2 The main page of the software

5

The Block Diagram window is a space for determining the process and structure of the program. In this

environment, by using the blocks provided to the user and arranged in different groups, the user designs

his/her program structure. These groups include numerical, array, Boolean, comparison, etc. groups.

Depending on the type of software used, these groupings change and provide the tools the user needs. For

instance, this software shows the user-related groups for this purpose when using the MINDSTORMS

module. On the other hand, due to the connection of this section with the Front Panel window, terminal

blocks are created for using inputs and sending outputs, which is, in fact, a gateway for transferring

information from the Front Panel to the Block Diagram and vice versa.

Intro to Virtual Instruments (VI)
As mentioned, any LabVIEW software program is called a virtual tool or VI, consisting of two main

parts: Front Panel and Block Diagram. Here, we want to briefly get acquainted with the Front Panel and

Block Diagram environments.

After creating a new VI in the software, two windows called Front Panel, and Block Diagram are

displayed. You can enlarge any Front Panel or Block Diagram windows on the screen by pressing Ctrl+/.

Ctrl+E is also used to move between the two windows. When you need to have both windows in front of

you simultaneously, press Ctrl+T, in which case both windows will be next to each other.

The overall layout of the two windows is very similar, so here are the key/common parts of the two

windows.

Menu Bar

VI Toolbar

Front Panel Workspace

Figure 3 The main sections of the Front Panel window

6

As you can see, this window consists of several parts. The top bar of this window, like most programs, is

called the Menu Bar, which is commonly used to create, store, or load a VI.

The bar at the bottom of the menu bar is known as the VI Toolbar. This bar can be used to run and stop

VI as well as arrange blocks.

A major part of these windows is the Front Panel or Block Diagram workspace. The workspace is the

space available to the user that shows the types of inputs and outputs or blocks. Because of the

importance of the VI toolbar, we introduce its buttons:

 Run: By clicking on this button, the corresponding VI is executed, and processing is done. This

option is also available via the Ctrl+R hotkey.

 Run (running): This is how the Run button looks when the VI is running.

 Run (broken): When the Run key looks like this, there is an error in VI; by clicking on this button,

the list of errors is displayed.

 Run Continuously: Selecting this button will run the program continuously until you stop or abort

the program.

 Abort Execution: This option stops the program.

 Pause: It pauses the program. If the program is paused, by clicking on this button, the program will

resume.

Making a Simple Program
To start with VI, let us look at a simple example.

After creating the first VI and displaying the Front Panel and Block Diagram, right-click anywhere in the

Front Panel environment to display the Control Palette:

Menu Bar

VI Toolbar

Block Diagram Workspace

Figure 4 The main sections of the Block Diagram window

7

As you can see, different control and indicator groups are displayed. If you need to search for control or

indicator, you can use the Search field on the control palette. If you do the same operation (right-click) in

the Block Diagram environment, you will see that the Functions Palette opens for you, which includes

different groups:

Now we want to take a number as input from the user in the Front Panel window and display the same

number as output in the same window. For this purpose, using the control palette, enter the Numeric

group and select Numeric Control:

Figure 5 Displays the control panel by right-clicking in the Front Panel window

Figure 6 Displays the function palette by right-clicking in the Block Diagram window

8

By selecting this option, you can place the Numeric Control anywhere in the Front Panel. Left click the

mouse to place this control:

The number shown in this control field is the input that the user gives to the program. Clicking the small

arrows to the left of this field changes the value of this number. You can also set this control by selecting

the number and typing the desired value. Now, you can see that a block called Numeric has been created

in the Block Diagram window, which is a terminal linked to the numeric control. Upon further

examination of the Numeric block, this block has a node:

This node is a representative for the number entered by the user, accessible in the Block Diagram space.

In the next step, right-click on the Front Panel workspace and select the Numeric group and select the

Numeric Indicator. By placing this block in the Front Panel environment, an indicator called Numeric 2

is created. This indicator is responsible for displaying numbers to the user. This number can be anything

and depends on the program and its block diagram.

Figure 7 Selecting the Numeric Control block

Figure 8 Placing the Numeric Control block in the Front Panel window

Figure 9 Numeric block associated with the Numeric Control block

9

Again, as before, a block is created for this indicator in the Block Diagram window. This block also has a

node that displays the outputs from the Block Diagram space to the user in the Front Panel area:

However, if we look a little more closely, the two blocks, Numeric and Numeric 2, although each has a

node, are different. In the Numeric block, which is related to the control or numeric input, the existing

node is output, which can input other blocks. But in the Numeric 2 block, which is the indicator or

numeric output terminal, the existing node is an input displayed to the user by connecting any number to

this node .

To display the input number in the output, connect the Numeric block output node to the Numeric 2 input

node in the Block Diagram space. To do this, click on the Numeric output node to create a connection

from this block, then click on the Numeric 2 input node to connect the two blocks. By doing this, we have

designed a program to receive a number from the user and display the same number to the user:

Now, we only need to Run the program. Since the designed program is extremely simple, the operation is

performed instantly, and the output is displayed. By changing the input value and running the program,

the output also shows the same input value:

To run the program continuously and update the output instantly, you need to click the Run

Continuously button so that your program always runs. In this case, by changing the input, the

output also changes, and there is no need to re-run the program every time.

Figure 10 Numeric Indicator block in the Front Panel window

Block input node

Figure 11 Numeric block associated with the Numeric Indicator block

Figure 12 Connecting Numerical indicator and control blocks to each other

Figure 13 Displays the input number at the output in the Front Panel window

10

DATA TYPE
LabVIEW stores data in various forms in memory. The most important types of data include the

following:

• Boolean: This type of data can only have two modes: FALSE (or zero) and TRUE (or any

non-zero value). This type of data is stored as 8-bit values in memory.

• Integer: This data type is stored as integers (non-decimal numbers) that can be expressed

with and without signs (signed and unsigned). Integer data are categorized according to the

bits assigned to this data:

o Byte Integer: 8 bits

o Word Integer: 16 bits

o Long Integer: 32 bites

o Quad Integer: 64 bits

• Floating-point: This data is used to display real numbers using the scientific symbol

method on a computer. Floating point data in LabVIEW can be stored with two precisions:

single-precision and double-precision.

Numerical Data
In the next step, we must process the data entered into the program and display the desired output to the

user. This process can be a numerical operation such as addition, multiplication, etc., or logical and

comparative operations or any other operation. Also, program inputs can be from the user, sensors, or any

other way.

Numerical Functions
Built-in functions can be used for numerical data processing in LabVIEW. In the following, we will

introduce these functions to get familiar with them:

• Add: Adds two numeric values together and outputs them through the output node.

• Subtract: Subtracts two numeric values from each other and outputs them through the

output node.

• Multiply: The product of multiplication of two numeric values are outputted through the

output node.

• Divide: The result of division of two numeric values will be outputted through the output

node.

• Quotient & Remainder: Outputs the quotient and remainder of two numeric values into

two output nodes.

• Increment: Increases the input number by one unit.

• Decrement: Reduces the input number by one unit.

• Absolute Value: Produces the absolute value of the number.

• Square root: Outputs the square root of the input number.

• Square: Outputs the square (power of 2) of the input number.

For example, we want to write a program that takes two numbers from the user and displays the sum of

those two numbers in the output. As in the previous section, we first place two numeric controls and a

numeric indicator in the Front Panel window:

11

Since we want to add two numbers together, in the Block Diagram space, we use the Add block in the

Functions palette and the Numeric group:

As it can be seen, this block has three nodes, the nodes on the left are the input, and the node on the right

is the output. By connecting two numeric values to the nodes on the left, the node on the right shows the

sum of them. Then we connect the blocks as follows:

By running the program continuously (Run Continuously), you can enter both numbers in the numerical

control field to see the sum of the sum in the numeric indicator:

Figure 14 Creating two numeric control blocks and one numeric indicator block

Figure 15 Adding the Add block in the Front Panel

Figure 16 Connecting the numeric control and numeric indicator blocks to the Add block

Figure 17 shows the sum of two inputs in the numeric index block

12

Binary Data
The example above is for the sum of two numeric values. Data operations can be performed logically,

comparatively, and so on. To examine another type of data, we consider binary or binary data. This data

can have only two values at a time: 0 or 1. These two values can be considered in different ways. For

example, any binary data can be considered as a switch, with a value of 0, the switch is off, and with

value 1, the switch is on.

Like numerical data for which mathematical operations such as addition and multiplication are defined,

specific operations are defined for binary data as well. The most essential and original operations can be

mentioned as follows:

• And: This operation is like the multiplication for binary data and is defined for the

operation between two binary data. The answer to this operation is obtained by multiplying

two binary data with each other. For example, if we consider operations 1 and 0, 0 × 1 = 0,

then 0 AND 1 = 0. This operation has a response of 1 if both data are one and otherwise a

value of 0 as the answer.

• Or: Equivalent to the summation in numerical data. The answer to this operation is equal

to 1 if at least one of the data has a value of 1; otherwise, it is equal to 0.

• Not: With the help of this operation, the desired data can be negated. If our data is 1, it

makes it 0, and if it is 0, it makes it 1.

Let’s say, we want to have two radio buttons that turn on a light if both are on, so we can design a

program like the one below:

The two switches are used as the program’s input, and the light is used as the program’s output. We use

the AND block to turn on the light when both switches are on. To do this, right-click in the Block

Diagram window and select the AND block from the Functions palette and the Boolean group:

Figure 18 Creating two binary control blocks and one binary indicator block

Figure 19 Connecting blocks to the AND blocks

13

By continuously running the program, the light turns on when both switches are on:

Array Data
Arrays represent vectors or matrices. Like a vector or matrix, an array contains several data of the same

type. Each array has two parts: the array (or element) and the dimensions (array size). Arrays can include

numeric, binary, string, and so on. The array can be used as both input (control) and output (indicator).

The main advantage of arrays is that a large amount of data of the same type is available, or we will do

the same operation on several data of the same type.

Each element in an array has a specific index. An index is like the address of an element in an array.

* Indexing in arrays starts from zero, which means that the first array index is zero.

1-D Array
To create a one-dimensional array in LabVIEW, right-click on the Front Panel window and go to Array,

Matrix & Cluster from the Controls palette and select Array:

By placing an Array anywhere on the page, you can create an array:

Figure 20 running the logical AND program

Figure 21 Selecting an array block in the control palette

14

As it can be seen, to the left of the created array is a numeric control that represents the index of the

element in the left cell. In fact, by selecting any value in this numeric control, this array displays elements

starting from this index.

As mentioned, an array can contain data such as numeric, binary, and so on. Initially, the inserted array is

empty. In this section, depending on the type of data considered, a numeric constant, a binary variable, or

etc. can be used to form an array of the same type. For example, here we want to create an array with

numeric data; for this purpose, from the control palette, in the Numeric section, we add a Numeric Control

to the composed array:

In this case, the created array is the input (control) type and contains numeric variables. To change the

size or dimension of the array, you can use pressing and holding the cursor on the enclosing box of the

numeric control and then moving the highlighted blue dots:

By moving the blue dots, the size of the array also changes. For creating a one-dimensional array, it can

be transformed into a columnar vector:

Figure 22 Creating an Array block in the Front Panel

Figure 23 Inserting numeric control into an array

Figure 24 Resizing an Array

15

Note that the number is not set up until a number is assigned to the array. That is, if we input numbers

into the only the first 4 elements of the above 5x1 matrix, this array will act like a 4x1 matrix:

By assigning the number 1 to the fourth layer of this array, all the layers before it will take the default

value of zero, and the layers after it will not be set up.

Like when creating numeric or binary variables created a terminal in the Block Diagram space, a terminal

is created for this array in the block diagram space. This terminal can be used in the programming

process:

Constant Array
Because the user does not interfere in creating or changing the constant array, we start from the Block

Diagram environment and create a constant array via the Functions palette → the Array section → Array

Constant:

Index 0

Index 1

Index 2

Index 3

Index 4

Figure 25 Creating a one-dimensional array with 5 elements

Figure 26 Setting up the elements of an array

Figure 27 the terminal created for an array in Block Diagram

16

As before, we must specify the data type of constant values. For example, we want this array to have

binary constants. To this end, go to the Boolean section of the Functions palette and select the True

Constant block and place it inside the array box:

As before, this array can be defined as a vector that has several constants:

Multi-dimensional Array
To build a multidimensional array or matrix, we follow the same procedure to build a one-dimensional

array. For instance, to create a two-dimensional matrix, place an array in the Front Panel and then right-

click on the array control (input number at the top left of the block) and select Add Dimension, to add

another dimension to the array:

Figure 28 Creating a constant array

Figure 29 Formation of a constant array of binary type

Figure 30 Resizing a constant binary array

17

In this case, another array control is added under the previous control. The upper control represents the

matrix row index, and the lower control represents the matrix column index.

Array Functions
As we know, arrays are like variables that store large amounts of data of the same type. In most cases, it is

necessary to perform operations and processing on the existing data to obtain the desired result or use it

somehow in our programming process. Like numeric or binary variables, functions are defined for arrays,

which we will introduce in the following.

Array Size
One of the most critical and basic operations that we will deal with in arrays is to get the dimensions of an

array. There is a built-in block in LabVIEW for this purpose. This block outputs a number or a one-

dimensional array (depending on its dimensions) for the number of indexes in each dimension.

For example, consider the following two-dimensional matrix that has the dimension of 5x4 (5 rows and 4

columns):

Figure 31 Adding dimension to array

Figure 32 An array with two dimensions

18

To get the dimensions of this matrix in the Block Diagram environment, select and place the Array Size

block from the Functions palette, in the Array section. By connecting the above matrix to the input node

of this block and connecting a one-dimensional array with at least two elements to the output node

(because each element is supposed to represent the number of elements in each dimension of the input

matrix), we have the following program:

As expected, by running the program, values of 5 and 4 will appear in the first two elements of the size

array (Array 2), respectively:

Figure 33 Creating an array with two dimensions

Figure 34 Connecting an Array Size block to a populated array

Figure 35 Displaying the array size in the Array 2 block

19

As you can see, only the first two components are used in the dimension matrix, and the other

components are not defined and set up.

Index Array
Sometimes it is necessary to have access to one or more specific elements. The prerequisite for this action

is knowing the index of the desired array(s). The Index Array block can be used for this purpose. This

block is located in the Array section of the Function palette. By connecting the array and the index

number(s) to the inputs of this block, the corresponding elements can be extracted at the output.

To call multiple indices, resize it using the two blue squares at the top and bottom of the block to increase

the number of indices/nodes:

Replace Subset
Replace [Array] Subset block is used to replace an element, row, or column in an array. For this purpose,

you need to connect to the input nodes of this block to the input array, the indices, and the desired

element(s) to output an array with the replaced element(s).

You can change the size of this block depending on your needs to increase the number of indices.

Other Functions
The following is a brief introduction to other useful functions for arrays:

• Insert into Array: Adds an element/array in the specified index of an n-dimensional array.

Figure 36 Showing the size of the array

Figure 37 Index Array block

Figure 38 Resizing the Index Array block

Figure 39 Replace Subset block

20

• Delete From Array: Removes an element/array from the specified index and both the

modified array and the deleted subset.

• Build Array: Creates an n-dimensional array with the given elements.

• Initialize Array: Integrates several arrays or adds one or more elements to the original

array.

• Array Subset: Extracts part of the array using the specified index and the given length.

• Array Max & Min: Gives the maximum and minimum values in the array as well as their

indices.

STRUCTURES AND LOOPS

For loop
The For loop repeats a process for a certain number of times. To access this loop in the Block Diagram

environment, go to the Structures section and select For Loop:

Figure 40 Insert into Array block

Figure 41 Delete from Array block

Figure 42 Build Array block

Figure 43 Initialize Array block

Figure 44 Array subset block

Figure 45 Array Max & Min block

21

Each program designed inside this loop will be repeated N times, and then the program will exit the loop.

To determine the frequency of repetition of this loop, we need to connect the node of the N block to a

numeric value. This numeric value can be obtained from a constant number, numeric control, or any other

method.

Block i inside this loop is the iteration or the loop counter that can be used as an output node in the

program. This value always starts from 0; meaning that i is equal to zero when the program starts.

The For loop holds for the condition N>i and will be repeated. The value of i is incremented each time the

loop is repeated. So, if we set the value of N to zero or a negative number, the For loop will never run.

Also, variables i and N are of Integer type. If float values are connected to these variables, they are

automatically rendered to the nearest integer number.

For Loop with Conditional Terminal
An important feature of the For loop is that you can also exit the loop for a specific condition in addition

to repeating the loop several times. By right-clicking on the For loop and selecting the Conditional

Terminal, a condition block will be created for the For loop. If this condition is satisfied, the program will

exit the For loop:

The created condition acts like the while loop, which we will talk about in the next subsection.

While Loop
The While loop will be repeated until the specified condition is satisfied. The structure of this loop is as

follows:

Figure 46 For loop in the Block Diagram environment

Figure 47 For loop with stop condition block

22

Block i, like the For loop, gives the number of repetitions of the program. The condition block is located

on the right-bottom of the loop by default. This block has an input node that must be connected to a

binary variable. The condition block can be considered a condition in two ways: 1) Stopping the loop

when the input node is True; 2) Continuation of the loop when the input node is True.

By default, the condition block assumes the first case. In this case, we need to connect a constant value of

zero or False to the condition block to create an infinite loop (endless loop repetition). By right-clicking

on the condition block and selecting Create Constant, a constant value of zero can be attached to this

block. In this case, the program will never exit when entering the While loop.

Shift register
The register shift can be used to transfer the values obtained in each iteration of the loop (For and While

loops) to future iterations. Right-clicking on the loop and selecting Add Shift Register will create two

blocks on both side of the loop, as shown below:

Figure 48 While loop in Block Diagram

Figure 49 Changing the stop condition

23

The block on the right is marked with an up arrow that stores the values in each iteration. In this case, the

software automatically transfers this value to the next iteration. The shift register can receive any type of

data, and of course, both data connected to the two register shift blocks must be of the same type.

* The number of shift registers is not limited, and they can be added to the loop as many times as needed.

You can also resize the left block of the shift register to access the values in previous iterations.

Case structure
This structure has two or more cases that if the condition of each item is met, the program of that section

will be executed. This structure executes only one item at a time. The value given to the input of this

structure determines which case will be executed.

The block on the left side of the wall of this structure is designated by "?" and is the condition of the

structure. If this value matches any of the items, the program for that item will run. By default, this

structure has two items: one (True) and zero (False). However, this structure can also be used for other

datatypes.

Items of this structure are located in the drop-down menu above it. You can change the value of each item

by selecting it. If the input to this structure is not binary, one case must be specified as the default case; so

that the program can be executed if other cases do not match. A case can be chosen as default by and

right-clicking on the desired case and selecting the Make This the Default Case option.

Figure 50 Creating a Shift Register in the While and For loops

Figure 51 Two different cases in the Case Structure

24

Flat Sequence
This structure is used to create an order in the execution process of different parts of the program. As

mentioned, LabVIEW does not necessarily run from left to right or vice-versa, and the program will run

whenever values are available for input nodes.

Each part of a Flat Sequence structure is called a frame, and each Flat Sequence structure can contain one

or more frames. Since this structure is executed from left to right and when all the required data in a

frame is available, this structure can be utilized to accurately plan the desired process of program

execution. To add a frame to this structure, right-click on it and click Add Case Before or Add Case After.

Data can be outputted once each frame is completely executed, so the input of one frame may depend on

the output of other prior frame(s).

No data will be outputted from this structure until the last frame’s operation is completed.

Figure 52 Flat Sequence structure

Figure 53 Creating a new frame in the Flat Sequence structure

25

CHAPTER 1 – PROBLEM SET

1. Design a program to receive the temperature in Celsius from the user and

display it in Fahrenheit (use °F = 1.8×°C+32 to convert Celsius to Fahrenheit).

2. Using the For loop and without using the Multiply block, design a program to

take two numbers from the user and display the product of their multiplication.

3. Use a For loop to create a timer to display the elapsed time when the program

starts.

4. Create a simple calculator that takes two numbers from the user and determines one

of the four operators (addition, subtraction, multiplication and division) to perform this

operation on those two numbers and display the result.

26

Chapter 2

Programming Mindstorms
2. Programming Mindstorms

27

AN INTRO TO THE MINDSTORMS MODULE
LabVIEW is designed to connect to various hardwares. Thus, it is necessary to install driver(s) to connect

LabVIEW to the hardware. The provided MINDSTORMS module is used to connect LabVIEW to the

Lego MINDSTORMS package.

Using this module, the designed VI can be implemented in two ways: 1) running VI on a computer and

exchanging commands and information with EV3/NXT brick, 2) running VI independently on EV3 /

NXT brick. This module can also be used to control TETRIX motors and servos connected to EV3/NXT

brick. In this section, we will implement a VI using both ways.

To get started with this module, go to the File section of the main screen of the program and select the

New NXT/EV3 → Robot Project option.

By selecting this option, the following window will be opened:

Click the Create button and choose a name for your project and then click the Create button again:

Figure 1 Creating a new EV3 project

Figure 2 EV3 project creation window

28

This defines a new robotic project that can be controlled through the following window:

At the top of this window is the robot's name, descriptions, and image; you can edit it by clicking the Edit

button.

Figure 3 Selecting a name and path for the robot project

Figure 4 Project Center window

29

In the Choose NXT/EV3 section, select the desired brick that is connected to the computer. To do so,

connect your brick to the computer with a USB cable and after the brick is identified, select it from the

drop-down menu in this section:

If you get an EV3 error message after selecting the brick, click the Update Firmware… button to update

your brick to the appropriate version of LabVIEW:

Figure 5 Enter the robot’s name, description, and image

Figure 6 Selecting an EV3 brick connected to the computer

30

Figure 8 Brick’s update process

After selecting this option, in the Update NXT/EV3 Firmware window, click the Update button and wait

for the update process to complete:

After displaying the message “Successfully Downloaded Firmware!”, Click the Close button.

Another part of the Robot Project Center window is Schematic. By selecting Open Schematic Editor, you

will enter the schematic editor environment:

Figure 7 Updating the brick

Figure 8 Brick’s update process

31

As you can see on the left side of this environment, general information of the brick, including battery

percentage, connection type, free space, and the firmware version are displayed. Also, if you are

connected to several bricks at the same time, you can identify the desired brick by clicking the Go button

in front of the Play Tone to play a beep sound from the brick.

In the right space of this window, you can see a schematic of the brick and its ports. By clicking on the

small arrow next to each port, you can select the motor or sensor connected to that port to get help from

this layout in the future and while designing the program process. Moreover, to perform various tests on

motors or sensors connected to the brick, a panel will be displayed on the left by selecting any of them,

which provides you with several options.

Figure 10 Schematic of a brick in the project center panel

32

In the Robot Files section of the Robot Project Center window, VI files and other projects are displayed.

At the bottom of the Robot Project Center window, click on NXT/EV3 Tools & Apps to get the following

applications and tools:

The NXT/EV3 Terminal tool opens a window where it provides you with the brick's information. You can

also use this tool to rename the brick, send, receive, and edit files from the brick. The Data Viewer tool

displays the information received from the sensors connected to the brick. The More Applications option

gives you extra add-ons which we will not discuss in this book.

Now that we have reviewed all the components of Robot Project Center, we are ready to start

programming for the brick. To build a VI and start programming, click the New VI button in the Robot

Files section:

Figure 11 Shows the motors and sensors connected to the brick

Figure 12 Other tools included in the Project Center window

33

Clicking this button will bring up two options. In fact, you can specify that the program you want to

design will be run independently on the brick or a computer connected to the brick.

We use the first option, VI for NXT/EV3 Target, where the designed program does not require a computer,

and the brick independently controls the motors and sensors. In this case, the destination is the brick.

But the second option, VI for Computer Target, is a program designed to be run by a computer, which

receives information from EV3 sensors or sends commands to EV3 motors if needed. This type of

programs can be used in various cases, for example, when it is necessary to display the data on the

computer or in cases where the user changes variables in the Front Panel space. In this case, the

destination of the VI is a computer.

By selecting any of the options, after selecting the name, a new VI is created, and two windows, Front

Panel and Block Diagram, are displayed:

There is a field at the bottom left of each window that specifies destination VI. By right-clicking on this

field, you can change the destination of the VI:

Figure 13 Creating a program for the intended destination

Figure 14 Displays the Front Panel and Block Diagram

34

The Main Application Instance option changes destination VI to the computer. If the software has not yet

detected your brick, you can click on Find NXT/EV3 to find your brick.

One of the significant differences between a VI with a brick destination and a computer destination is the

VI play or upload buttons. If the destination is brick, the VI toolbar buttons are displayed as Run and

Deploy. However, if the destination is a computer, the Upload button is changed to the Run Continuously

button.

In fact, if the destination is a brick, by clicking the Run button, the program will run only once and will

not even be saved on the brick's memory, but by clicking the deploy button, the program will be moved to

the brick, stored in its memory, and then can be independently run by the brick.

Another difference between the two types of programs is the toolbars and functions they provide for the

user by default. If the destination is brick, the palettes display the blocks associated with the

MINDSTORMS group by default. However, if the destination is a computer, the primary program

palettes are displayed. Nevertheless, in both cases, all groups can be accessed by selecting the group name

in both palettes.

In the next section, we will discuss programming for and working with motors and sensors.

Figure 15 Destination selection of VI

35

MINDSTORMS EV3 COMPONENTS
To start programming the EV3, we first review the electronic components, including the motors and

sensors in the MINDSTORMS EV3 package:

EV3 Brick

Brick is the brain of MINDSTROMS robots. Written programs are executed in the brick. The information

extracted from the sensors are transmitted to the brick and the desired commands are sent to the motors by

the brick.

There are 5 buttons and 8 input ports on each brick. The following figure shows the different parts of the

brick:

Large Motor

Ultrasonic Sensor

Color/Light Sensor

Gyroscope Sensor Touch Sensor

EV3 Brick

Medium Motor

Figure 16 Different components of the MINDSTORM EV3 package

Figure 17 EV3 brick

36

1. Back button: This button is used to return to the previous menu, exit the running program,

or turn off the brick. To turn off the brick, you need to return to the main menu of the brick,

and after pressing the return button, select the option.

2. Center button: This button can be used to select the desired option or run programs.

3. Directional button: These keys are four main directions (up, down, left and right). These

keys can be used to navigate through the brick menus as well as input applications.

As you can see, after turning on the brick (i.e., holding down the center button), four tabs and the main

menu are displayed. Use the left and right buttons to navigate through the tabs.

Figure 18 Different sections of a brick

37

1. Run Recent menu: The latest programs run by the block are displayed in this menu. New

applications uploaded within the block are also displayed.

2. File Navigation menu: Using this menu, you can access the files in the brick's memory.

3. Programs menu: You can access the various applications on the brick in this menu. In this

section, we will briefly describe each of the programs:

o Port View: This program can be used to view the sensor or motor connected to

each port. You can see the sensor or motor connected to each port with the arrow

buttons in this case. This section can be used to troubleshoot or calibrate sensors

and motors.

o Motor Control: This program can be used to control motors manually. In this case,

by pressing the center button, the pair of motors connected to the brick can be

specified, and with the directional buttons, each motor can be moved in two

directions. This program can be used to check the motors and their performance.

o IR Control: This program can be used to set the infrared remote-control options.

In this book, we will not describe these options because the remote-control is not

included in the core sets of EV3 robots.

o Brick Program: This program can be used to program a robot. This program can

be used for simple applications, but it cannot be used for complex applications due

to its simple environment and limitations.

o Brick Data log: This program can be used to store and display data sent from

sensors.

4. Settings: In this menu, you can access the brick's settings such as volume, timer, Bluetooth,

Wi-Fi, and other options.

Run recent programs
File Navigation Programs on the brick

Settings

Figure 19 Brick’s tabs

38

There are 8 input and output ports on each brick. There are 4 ports at the top with the letters A, B, C and

D, which are output ports for connecting the motor to the brick. The other 4 ports are located at the

bottom of the block and are labeled 1, 2, 3 and 4. These ports are inputs and used to connect the sensors to

the brick. There is a Mini-USB port for connecting the brick to a computer with a USB cable. Wireless

connections can also be used to connect the brick to the computer.

Motors

There are two types of engines in the EV3 series, known as large motor and medium motor. These two

types of motors are servo motors that can measure rotation, speed, and power of the motor. Servo motors

use encoders to measure rotation and its derivatives (velocity and acceleration). The accuracy of

measuring the rotation of this motor is 1 degree. The sensors in these motors can also be used to extract

information in experiments.

The difference between a large motor and a medium motor is in their power, speed and spatial

configuration. Large motors are used for more power but lower speeds, as their maximum speed is 160-

170 rpm, and their maximum torque is 20 N.cm in motion and 40 N.cm at rest. On the other hand, for the

medium motors, their maximum speed is 240-250 rpm, torque is 8 N.cm in motion and12 N.cm at rest.

In fact, these motors are the actuators of our robot which can be used as wheel drivers, grippers, belt

actuators, and so on. In the following, we will discuss the basics of working with motors and some

examples of their applications.

Input ports Output ports
Computer connection port

Figure 20 Brick’s input and output ports

Large motor

Medium motor

Figure 21 EV3 motors

39

Commanding Motors
There are several ways to command a motor in LabVIEW. The simplest type of command is to specify

motor power/speed. Another way is to determine the amount of motor rotation. There are other ways to

move a motor, which we will discuss later.

Move Motors Block
Connect a large motor to port A of the brick to start. Then, connect the brick to your computer with a

USB cable. Create a new project in LabVIEW. In the block diagram window, right-click and navigate to

the I/O category in the MINDSTORM Robotics section, and from there, select the Move Motors block and

place it in the block diagram space:

After placing the Move Motors block, this block will appear:

Right-click on the top node of the block (Motors) and select Create Constant to specify the port to which

the motor is connected. Here we want to apply this command to the motor connected to port A. So, after

selecting Create Constant from the drop-down menu, select Lego Port A:

Figure 22 Selecting the Move Motors block in the block diagram window

Figure 23 Move Motors block

40

Note that if you do not specify a motor in this section, the program will apply this command to all motors

connected to the brick.

In the next step, it is time to determine the magnitude of power/speed. As shown in the block, you can

specify the type of command from the drop-down menu at the bottom of the block. This block has two

types of commands called Constant Power and Constant Speed. Using the first option, we specify the

motor's power, which will change its rotational speed according to the amount of load on the motor. But

in the second option, the motor speed is specified, in this case the motor adjusts its power to meet and

maintain the commanded speed.

To determine the power/speed of the motor in this block, we must connect a fixed number block to its

input node (known in the program as Power/Speed 1), which indicates the power/speed of rotation of the

motor. For simplicity, you can right-click on its input node and select Create → Constant.

By selecting a fixed number block as shown below, a fixed number of 75 is created by default:

Figure 24 Connecting the desired motor to the Motors node

Figure 25 Creating a fixed number on the Power 1 node

41

Figure 26 Assigning a constant value of 75 for the power of the motor

The number given as power/speed to this block must be between -100 and 100. Negative numbers mean

rotation in the opposite direction. If numbers greater than 100 or less than -100 are given to the block,

they are considered as 100 and -100. In fact, this number indicates the percentage of power/speed of the

motor, which is 75% or 3/4, by default. Now by uploading and running the program, the motor connected

to port A will start with 75% of power.

By running this program, the motors are activated in an instant, but they stop quickly and the program

ends. This is because we only executed the command once, and after executing this command, the

program is over. To move the motors consistently, this command must be sent to the robot continuously.

So, it is necessary to execute this command all the time. To do this, an infinite While loop can be used. As

explained in the previous chapters, by creating an infinite While loop, one or more blocks can be executed

infinitely and permanently. So, after adding an infinite loop, we will have:

We can use only one Move Motors block to command several motors simultaneously. This is possible by

clicking on the arrow below Lego Port A and selecting another port from the newly created drop-down

menu. For example, if one motor is on port A and the other one is on port C:

Figure 27 Assigning the value 75 as the motor power connected to port A

42

In this case, we will be able to determine the power/speed of the two motors separately. To do the same as

before, we connect a fixed number block to the Power/Speed 2 node:

By uploading and running this program, the motor connected to port A with 60% power and the motor

connected to port C with 20% power will move in the opposite direction.

Command using Fixed Distance block
This block is used to create a fixed distance movement. This block is used in cases where we already

know the amount of robot movement or the amount of engine rotation, or we can calculate. To add this

block to your application, go to the MINDSTORM Robotics section and select I / O → Motors → Fixed

Distance from the section:

2 1

4 3

Figure 28 Method of adding a motor to the Motors node

Figure 29 Movement of two motors in an infinite loop

Figure 30 Fixed Distance block

43

First, in this block, like the Move Motors block, we specify the port (s) connected to the desired motor

(s):

In the next step, we must specify the amount of rotation and the speed of the motor. For the engines in the

EV3 set, we will be able to move them with an accuracy of 1 degree. So, the number that goes to the

Distance 1 node indicates the amount of motor rotation in degrees. The rotation value is 360 degrees by

default. By creating a fixed number block on this node, we can specify the amount of motor rotation:

The Speed 1 node is used to determine the speed of the motor, which is determined like the Move

Motors block. By applying for a fixed number between -100 and 100 to the Speed 1 node, the engine

rotation speed can be defined:

Another difference between this block and the Move Motors block is in the drop-down menu at the

bottom of the block. In this block, by opening the drop-down menu, two options, Relative and Absolute,

appear.

Figure 31 Connecting the Motors node to the desired port

Figure 32 Assigning the value of the motor rotation angle

Figure 33 Assigning the amount of motor power

44

In relative motion, the motor rotates a certain amount from its current position. However, in absolute

motion, the motor moves the motor to the said position according to the value read by its encoder. For

example, suppose we specify a value of 200 in the Distance 1 node and the read value of the motor

encoder is 100 in the initial state, in the relative motion mode. In that case, the motor eventually reaches

the 300 positions, but in the absolute motion mode, the motor moves to the same position 200... In fact, it

can be said that in relative and absolute terms, the definition of a block from the Distance 1 node changes.

It should be noted that for the relative movement of the motor, the amount of displacement and speed

must be both positive and negative for the block to function correctly.

Next, after determining the type of relative or absolute motion, we must specify the amount of program

pause to execute this command. By default, this block partially moves the engine, giving the command 3

seconds to run. If the engine speed is low or the amount of rotation is high, more than 3 seconds is

required for the specified speed, so this time should be increased. If the specified period value is

performed earlier than the specified time, the program will automatically run and continue.

Lego Steering Block
One of the most important commands that can be given to motors is to follow curved and circular paths.

You can use Move Motors or Fixed Distance blocks to do this, but for more simplicity and speed in robot

programming, the LEGO Steering block is designed. This block is available in the Functions →

MINDSTORM Robotics → I / O → Motors section called LEGO Steering:

In this block, by specifying two motors in the Motors node, the command operation can be performed

with different motor powers. In the Power 1 node, select the value of the motor power, which is a number

between -100 and 100, and in the Steering 1 node, select a number between -100 and 100, in which case

the first and second motor power (respectively, in the Motors node Are specified) is a percentage of the

power specified in the Power 1 node. This percentage is determined according to the following chart:

Figure 34 Specifying the relative or absolute motion of the motor in the drop-down menu at the bottom of the block

Figure 35 LEGO Steering block

45

In fact, in positive values for the Steering 1 node, the first motor has a power equal to the value given in

the Power 1 node, and the second motor has a percentage of this power. For negative values, this is the

case for two photo engines. In the next section, we will discuss in detail the application of this block in

robot programming.

Stop Motors Block
The two blocks introduced in the previous sections are used to command and move the motors, one of

which can be used depending on the type of movement and the purpose of that movement. But the point

to note is that when we command the motors to move, we must also issue a stop command to the motors

after the movement is completed. Because when we use several motors to move the motor, if the Stop

Motors block is not used, the commands will overlap and usually, the movement predetermined by the

robot will not be executed.

The Stop Motors block is accessible from Functions → MINDSTORM Robotics → I/O → Stop Motors:

To use this block, all you must do is specify the port (s) connected to the motor (s) and then connect the

NXT / EV3 input and output nodes to the previous and following blocks, respectively:

Figure 36 Diagram of the power of each motor relative to the input value of the steering node

Figure 37 Stop Motors block

46

Note that this block will issue a stop command to all motors connected to the break if we do not specify

the Motors node.

Another option for this block is available from the drop-down menu at the bottom of the block. This block

has two modes, Brake and Coast. In Brake mode, the motors stop quickly, but in Coast mode, the motors

slow down slowly and then stop, which can be selected depending on our goal.

Motor Applications
As mentioned, motors can be used for different parts of a robot, including grippers, wheels, arms,

launchers, belt actuators, etc. In fact, our actuators in the EV3 series are DC motors, but in the industry,

different actuators are used besides DC motors, such as hydraulic and pneumatic cylinders, each of which

has its own characteristics.

One of the simplest and most widely used application of motors in robots is to drive a wheel. In this case,

as the motor rotates, the wheel also rotates and causes the robot to move on the ground.

Build the basic Educator robot according to the instructions given in the appendix.

In this robot, we have two wheels that are connected to two motors. One of the motors is connected to

port B and the other to port C of the brick. By activating these two motors, different paths can be traveled

by the robot. In the following, we will review the planning for some main routes.

Moving in a straight path

As we know, to move in a straight line, it is necessary for both wheels to rotate at the same speed, in

which case all points of the robot have the same speed. Move Motors block can be used for this purpose.

As described in the previous section, add the Move Motors block to the system and apply the command to

the two motors B and C:

Figure 38 Connecting the nodes of the Stop Motors block

Figure 39 Moving the robot in a straight line

47

Note that in the Move Motors block, select the Constant Speed drop-down menu from the drop-down

menu and set the speeds of both motors (Speed 1 and Speed 2) equal to 75. We have also placed it inside

an infinite While loop to execute this command continuously.

By changing the fixed number 75 between -100 and 100, the movement speed on the straight path can be

increased or decreased.

Try this program with LEGO Steering block as well. The LEGO Steering block is commonly used to

rotate the robot and navigate curved paths, but direct movement can also be commanded.

Rotating about a wheel

If we want to rotate around wheel C, we need to apply the Move Motors command only to motor B.

Figure 40 Continuous movement in a straight line with the Move Motors block

The radius

of rotation

Figure 41 Rotation of a robot around a circle

48

If we want to rotate around a wheel with the LEGO Steering block, according to the diagram of this

block, we can program the exact same operation by setting Power 1 equal to 75 and Steering 1 equal to

50:

The robot starts spinning around the C wheel by running the above program and repeats this movement

indefinitely. But in many applications, it is necessary for our robot to rotate a certain amount and then

follow another operation, so it is necessary to rotate around a wheel a certain amount. To do this, we use

the Fixed Distance block to determine the change of the robot angle by rotating a wheel to a certain value.

As you can see from the previous experiment, rotation around a wheel is like moving a robot on a circle

with a radius of the distance between the two wheels and the center of the wheel, so to determine the

angle of rotation, we need to calculate the length of the path we walk on this circle. On the other hand,

with the Fixed Distance command, we control the angle of rotation of the engine and the wheel. If we

consider the wheel's radius (which can be obtained by measurement) equal to r and take the angle of

rotation of the motor θ °, the path traveled by this wheel is equal to rθ.

On the other hand, if we assume the angle of rotation of the robot α and the distance between the two

wheels is d, the value of dα is equal to the length of the circular path:

By equating these two paths (the path traveled by the wheel and the path traveled on the circle), the value

of θ can be obtained:

𝑟𝜃 = 𝑑𝛼 → 𝜃 =
𝑑𝛼

𝑟

Figure 42 Continuous rotation around a circle with a Move Motors block

Figure 43 Continuous rotation around a circle with LEGO Steering block

49

In practice, to use this formula, the values of r and d can be obtained by measuring with a meter, ruler, or

caliper, and we know the value of the robot's rotation angle (α) as we wish. To simplify the calculations,

the said relation can be written in the program so that the wheel rotation angle can be calculated only by

changing the rotation angle:

𝛼°

d

𝑑𝛼

Figure 44 The path traveled by moving around a wheel

𝑟

𝑟𝜃

𝜃°

Figure 45 Path traveled by a wheel

50

Here our desired rotation value is 90 degrees. To change this angle, just set the Rotation angle to the

desired angle. Note that from the drop-down menu at the bottom of the Fixed Distance block, we have

selected the Relative → Wait Up To → 30-sec option, because first, we want the motor to move θ from its

original position, and second, we give the motor a maximum time of 30 seconds to adjust its angle.

Change. If the spin is completed in less than 30 seconds, the program continues and ends.

Compound Paths
In the previous two sections, we examined the movement in a straight line and a circular path and wrote a

plan for each. In this part, which is a combination of the previous two parts, we want our robot to move in

a path that includes a straight path and a circular path. For example, suppose our path is a square with

rounded corners as follows:

As we know, this path includes four straight paths (square side) and four circular paths (square corners).

Since all four sides and corners of this square are the same, it is enough to write the program for one side

and corner of this path and repeat it infinitely. By combining the previous two parts, we will have:

Figure 46 90-degree rotation around a wheel with a Fixed Distance block

Figure 47 Robot movement in a compound path

51

This program consists of two blocks described in the previous two sections connected to the adjacent

blocks by the NXT/EV3 output and input nodes. The Stop Motors block is used after each motor

command to move the motors correctly and not interfere with each other.

Figure 48 Continuous motion of the robot in a square path

52

TOUCH SENSOR

The Touch Sensor is a simple button designed to detect the robot's collision with objects and obstacles or

as a zero-in-one input. The sensor can detect when the button is pressed, released, tapped, and counts the

number of times the single and multiple buttons are pressed. One of the most important applications of

this sensor is for maze-solving robots.

Reading Touch Sensor
First, we add the Sensor block from the functions → MINDSTORMS Robotics → I/O section to our

diagram block.

There are 4 modes or operating modes for this sensor. The output of the Sensor block in all 4 modes of

this sensor will be a True/False logic variable.

These 4 modes are Pressed, Released, Bumped and Count, respectively.

• In Pressed mode, when the button is pressed, it generates a True output node, otherwise

False. By placing this block in the infinite loop and adding the Sound block, you can write

the following program that creates a beep break by pressing the button.

Figure 49 EV3 Touch sensor

Figure 50 Touch sensor block

Figure 51 Four modes defined for the touch sensor

53

You can also write such a program with the Wait For block:

• Released mode is similar to Pressed mode, except that it works the other way around. That

is, in Released mode, when the button is pressed, the output node is False, and in other

cases, it is True.

If we write a program similar to the one, we wrote for the previous fashion, then the break

is constantly beeping unless the button is pressed:

• In Bumped mode, the output node generates a True pulse each time you hit the button (at

the moment of release). The difference between this case and the previous two cases is that

in the previous cases, the output node stays True continuously, but it becomes True only

for a moment, and in other cases, it is always False. In the following program, each time

you hit the button, it produces a beep break.

Figure 51 Creating a beep sound by pressing the sensor button

Figure 52 Beep when pressing the sensor button with the Wait For block

Figure 53 Mute the beep by pressing the sensor button

54

• The latest mode of this sensor is Count. In this mode, the output of the node is a number

that the sensor counts each time the button is pressed. In fact, in this case, the number of

times the button is counted. In the following program, each time the button is pressed, the

number of times counted increases and is displayed on the brick's screen:

Table 1 Output node status in three modes of contact sensor

Position

Output
Pressed Released Bumped

Button is not touched False True False

Button is touched True False False

The moment the button

is released
False True True

In a general summary and to clarify the difference between the three modes (Pressed, Released and

Bumped), the following table shows the output of the block in different conditions:

Touch Sensor Applications
One of the simplest and most widely used uses of this sensor is to determine the robot's encounter with

obstacles in front of it. For this purpose, we first connect the touch sensor to the EV3 Educator robot as

follows:

Figure 54 Generating a beep by tapping the sensor button

Figure 55 Displays the number of times the sensor button is pressed on the break screen

55

56

57

Our goal is to program a robot that goes straight and spins when it encounters an obstacle and then

continues its way again.

Figure 56 Installing the touch sensor on the Educator robot

58

To do this, we first place the Move Motor block inside the infinite loop so that the robot can continue to

move directly:

Next, if the touch sensor is pressed, we want the robot to stop and spin backward on one of its wheels (if

it spins in place or forward, it certainly does not allow the front obstacle to rotate). Use the Wait For

1

2 3

𝟗𝟎°

4 5

Figure 57 The robot redirects when it encounters obstacles

Figure 58 Creating continuous motion on a straight line

59

block to detect the button being pressed and set it to Wait for NXT/EV3 Touch → Pressed. Next, first,

stop the motors and then rotate on a wheel:

In this way, the robot continues the straight path until it hits an obstacle. If the robot hits an obstacle, it

rotates 90 degrees and then continues straight again.

Figure 59 Detection of the sensor button colliding with the Wait For block and the robot turning backwards and repeating this

process

60

ULTRASONIC SENSOR

An ultrasonic sensor has an ultrasonic transmitter and receiver that measures the distance to obstacles at

front of it using ultrasound waves (electromagnetic waves with a frequency beyond the human hearing

range). Specifically, the transmitter first sends an ultrasound pulse to the front. The transmitted pulse then

returns to the receiver after reflecting from the obstacle. By calculating the time between sending the

pulse and receiving the reflected pulse and knowing the speed of sound in the air (for dry air at 20 °C, this

value equals 342.2 m/s), the distance to the obstacle can be calculated.

Reading Ultrasonic Sensor
To read the sensors, we generally use the Sensor block in the I/O section. There are several ways to get

information from the ultrasonic sensor and display it in the software. First, connect the ultrasonic sensor

to the EV3 socket by cable (to each port 1 to 4) and connect the socket to the computer's USB port. Then,

to read the sensor information and display it in the lab, place the Sensor block in the infinite while loop to

continuously update and display the read values from the sensor:

In the Front Panel section, the read values in centimeters are displayed as follows:

Figure 60 EV3 Ultrasonic Sensor

Figure 61 The method to read ultrasonic sensor information

61

Ultrasonic calibration
Experiments can be performed to understand the accuracy of the ultrasonic sensor and the environment

covered by the sensor. Figure 64 shows the layout required for the experiment:

By considering the obstacle in front of the sensor and increasing its distance from the sensor, the diagram

in Figure 65 can be drawn, which shows the distance measured by the sensor in terms of the actual

distance. It is also possible to plot the average deviation from the actual value.

Figure 62 Read the value of the sensor in the Front Panel

Figure 63 Position of sensor and obstacle in the first test

62

Distances of less than 3 cm are not measurable by the sensor. The maximum deviation from the true value

is 2.6 cm at a distance of 2.5 cm. The average deviation of this sensor is 0.408 cm (less than 0.5 cm),

which indicates the correct behavior of the sensor.

In the second experiment, our goal is to get the field of view of this sensor. In this experiment, the same

barrier was used before (14.5 by 9.5 by 6 cm). In this case, we move the obstacle at different distances

and angles to the sensor and record the read distances. The sensor is placed in both horizontal and vertical

positions. Figure 66 shows the layout with the horizontal position of the sensor.

Figure 64 Graph of the distance measured by the sensor in terms of actual distance

63

In Figure 67, a graphical representation of the field of view is drawn in the horizontal position.

Figure 65 Obtaining the range of view in the second experiment

Figure 66 Graph of the horizontal viewing angle of the sensor in terms of obstruction distance

64

The results show that the ultrasonic sensor should always be in the horizontal position because the range

and depth of vision are reduced in other positions. The sensor in the left eye has some visual impairment

because the left eye of this sensor is the receiver of ultrasonic waves, and the right eye is the transmitter

of those waves.

After the above tests were performed for the statistical behaviors of the ultrasonic sensor, we proceed to

dynamic tests. Figure 68 shows the distances read by the ultrasonic sensor as it approaches the wall. The

information in this diagram is plotted by programs in the LEGO software under LabView, in which the

ultrasonic current values and the angle values of one of the moving motors are stored in a file in the

break. This file is then downloaded from the break.

The dynamic test reveals two weaknesses of the ultrasonic sensor. The first is that the sensor displays 255

cm in some areas instead of the actual distance. The second case, which is even more important, is the

critical area between 25 cm and 50 cm, in which case the sensor in most cases displays the wrong value of

48 cm.

Ultrasonic Sensor Applications
This sensor can be used for different applications. One of its applications is to prevent the robot from

colliding with obstacles. Next, we modify the educator robot so that it detects the obstacles in front of it

and avoids them by changing its course.

Make the following corrections on the educator robot:

Figure 67 Graph of the ultrasonic sensor dynamic test result

65

66

67

68

We want to program the robot in a way that moves in a straight line by default and when it gets close to

an obstacle, it rotates and continues its direct movement again. In this way, the robot will be able to

constantly move and avoid hitting obstacles.

So first, like the following, we place an infinite loop always to repeat this process, in which we program

the direct movement of the robot:

Figure 68 Installation of an ultrasonic sensor on the educator robot

Figure 69 Obstacle detection with ultrasonic sensor

69

In the next step, we must use the Wait For block to stop the engines and thus prevent collisions with

obstacles. This block has arbitrary conditions that specify that when the condition is met, the robot stops

working and performs the next activity. Here we want the robot to continue to move straight until an

obstacle less than 10 cm away is detected, and if an obstacle less than 10 cm away is detected, the robot

stops and rotates 90 degrees clockwise. Then set the Wait For block condition to Ultrasonic → less than

(cm) and give the fixed number 10 as input to the block:

What to do after the Wait For is to stop the wheels first and then move one of the wheels to the right size

for the robot to rotate 90 degrees:

Figure 71 Movement of motors in the infinite while loop

Figure 70 Adding the wait for block

Figure 71 Adding Stop Motors block and rotating the robot

70

GYROSCOPE SENSOR

The gyroscope sensor is used to measure the amount of rotation or to measure the speed of rotation. The

gyroscope sensor in this set can only measure rotation around an axis. The EV3 gyroscope sensor is made

using MEMS (Micro Electro-Mechanical System) technology. The operation of the gyroscope sensor is

based on the force due to Coriolis acceleration. Consider a small mass of crystal inside a metal enclosure.

This small mass of crystal shrinks slightly when an electrical voltage is applied and returns to its original

size when the voltage is removed. Now, if we connect a spring to this mass and constantly disconnect and

connect the electric current, the mass oscillates along an axis. As we know from the law of energy

conservation, moving objects tend to keep moving in the direction of their motion unless an external force

is applied to them in the other direction. When the sensor rotates, the crystal mass maintains its linear

motion in the original direction of oscillation. However, because the sensor's body is also rotated, this

crystal mass no longer oscillates in the same direction as the sensor body. The gyroscope sensor measures

the amount of this deviation and calculates the amount of rotation and thus can measure the amount of

rotation and the rate of rotation (angular velocity).

Gyroscope sensor is used in many industries, from cell phones to satellites and massive industrial robots.

Reading Gyro Sensor
First, we add the Sensor block from the functions → MINDSTORMS Robotics → I/O section to our

diagram block.

Two modes of operation are defined for this sensor. One is for reading the Read Angle, and the other is

for reading the Read Rate. First, we place this block on the Read Angle and place it inside the infinite

loop:

Figure 72 EV3 gyroscope sensor

Figure 73 Sensor block

71

In this case, the value of the angle measured by the gyroscope sensor is read at any time and displayed in

the Front Panel. Note that in this case, the read angle is measured relative to the default sensor reference.

In the next section, called the calibration of the gyroscope sensor, we will change this reference.

In another mode of this sensor, we can read the rate of change of angle. As before, place the sensor inside

the infinite loop and then select the Read Rate option. Now, by running the program, you can see the

amount of sensor rotation in the Front Panel at any time:

Gyro Sensor Calibration
As mentioned in the previous section, the angle read by the sensor relative to the sensor's default

reference is announced. To change this reference, you can use the Sensor block and the Reset Gyro

option, so that every time we run the program, the reference is the same as the original angle, and the

sensor reads other angles relative to that angle:

By executing the above program, first by resetting the gyroscope sensor, the reference angle is changed to

the initial angle of program execution, and then the other read angles are declared relative to that initial

angle.

Figure 74 Reading the angle value from the reference

Figure 75 Reading the angle change rate

Figure 76 Resetting the reference angle and reading the angles relative to the initial sensor angle

72

Gyro Sensor Applications
The gyroscope sensor is used in a wide range of robots. First, to get better acquainted with this sensor,

using the basic robot, we write a program that always keeps the direction of the robot to one side, and the

robot resists the change of direction. As we became acquainted with the proportional controller in the

line-tracking robot, here we use this type of control to implement this goal. For this purpose, we first

connect the gyroscope sensor to the Educator robot:

73

74

75

Suppose we want the robot to always be at a zero-degree angle, so our reference value is zero.

Figure 77 Connecting the gyroscope sensor to the Educator robot

76

Now we have to generate the error signal and, after multiplying a gain factor in it, apply the amplified

signal to the motors. To generate an error signal, we do the following:

Then we multiply this signal by a fixed number and apply it to the motors. Note that our goal here is to

rotate the robot around its own axis, so the direction of rotation of the motors should be opposite to each

other, so the amplified signal should be applied to one motor, and the negative signal should be applied to

the other motor.

Figure 78 Angle measured by a gyroscope sensor

Figure 79 Error signal formation

77

Finally, the desired program is shown above. Now, by running this program, the robot always maintains

its direction towards the zero angles, and if it changes direction, it rotates in proportion to the difference it

has from the zero angle and brings itself to the zero angle.

Figure 80 Adjusting the motor to a zero-degree angle by rotating the wheels

78

COLOR/LIGHT SENSOR

Visible waves comprise a small part of the electromagnetic spectrum from a wavelength of 400 to 700

nm; by changing the wavelength in the visible waves, the color of the reflected spectrum changes. The

use of color sensors has many applications in robotics and industry. In the simplest case, photoresistors

can identify the color of the received spectrum, which applies different electrical resistances by changing

the color. But the most widely used color sensors are made by semiconductor technology, in which case

some LEDs create a different electric current according to each color. LEDs are usually used to illuminate

white objects more accurately to identify the color of each object. Then, by applying specific filters on the

received wavelength, it can be interpreted in three colors: red, green and blue. These three colors are the

main colors that can be used to produce other colors. The basis of the work of the human eye is the same.

The sensor in the EV3 set, in addition to being able to detect the values of the three primary colors red,

green and blue, can detect the absence of color (clear) and light intensity. In the following, we will

examine the method of using this sensor for different purposes.

Reading Color/Light Sensor
Just as we used the Sensor block in functions → MINDSTORMS Robotics → I/O to read other sensors'

values, we add this block to our program diagram block to read the values of this sensor in a similar way.

After placing the sensor block, click on the bar at the bottom of the block to go to the Read EV3 Color

directory. Here are 4 options as shown below:

Figure 81 EV3 color sensor

Figure 82 Sensor block

79

• The first mode is Ambient, in which case the sensor is in the mode of measuring the intensity of

ambient light. Selecting this mode creates an input node and an output node in the block:

To specify the port to which the sensor is connected, right-click on the node at the top of the block, select

Create → Constant and select the appropriate port from the created bar. In the next step, to show the

amount received, which indicates the amount of light in the environment, right-click on the node to the

right of the block and click Create → Indicator. In this case, a window called Scaled Value will be

created in the front panel, in which the read value of the sensor will be displayed:

In order for this value to be repeated continuously, we place it in an infinite while loop:

Figure 83 Different modes for the color sensor

Selected sensor port

The measured value

Figure 84 Color sensor inputs and outputs

Figure 85 Color sensor input and output connection

80

In this case, by uploading the program on the break and running the program continuously, you can see

the read value of the sensor.

• The next mode is the Detect sensor. In this mode, the sensor detects 7 colors and identifies each

color with a number. According to the table below, each number is assigned to one color:

Table 2 corresponds to the code for each color

Red 5 Black 1

White 6 Blue 2

Brown 7 Green 3

No Color 0 Yellow 4

This mode, like the previous mode, has a node to specify the port connected to the sensor and another

node to identify the color.

To read the color sensor and identify the colors, we can place the sensor in an infinite loop as before and

display its output according to the table above.

By adding a Case Structure, the detected color can be viewed on the Front Panel. The Wait block (ms) is

placed to create a time interval between each color detection, which causes the sensor to detect color

every 3 seconds (3000 milliseconds).

• The third mode of the sensor is called Reflected. In this case, the sensor measures the light

reflected from the surface. This mode has many applications, especially for the design of line-

following robots. In this way, the values read from the reflection of the black line are different

from the values read from the ground. As in the previous cases, in this case, we specify the port

connected to the sensor and display the read value on the Front Panel.

Figure 86 Putting the measurement process in an infinite loop

Figure 87 Reading and color recognition by the color sensor

81

In the next section, we will calibrate this state of the sensor to design the line tracking robot and other

similar robots properly.

• The last mode of color/light sensor is RGB. RGB stands for red, green and blue, which are known

as the principal colors. In this case, the sensor shows the detected color as a combination of these

three colors. By specifying the port connected to the sensor and creating the indicator (Indicator)

by right-clicking on the RGB Color node and selecting the Create → Indicator option, the RGB

Color block can be added to the set.

In this case, three RGB values are displayed in the Front Panel.

Color/Light Sensor Calibration
As mentioned, the color/light sensor can measure light intensity, color detection, RGB values and

reflection. In the first three cases, the sensor works according to factory settings, and in most cases,

calibration is not required for specific applications. However, in the case of reflectance measurement, it is

necessary to adjust it according to the conditions and working space of the robot and to determine the

correct readings and accuracy of the robot, the values read on the black line and the background as a

criterion.

Figure 88 Measuring and displaying the reflected value from the surface

Figure 89 Measuring and displaying RGB values

Figure 90 Displays RGB values in the Front Panel

82

For this purpose, we create a program as follows so that the appropriate values for the black line and the

background can be extracted and measured by performing its steps.

First, a short beep sounds to announce the start of calibration, and then a message is generated on the

brick's screen based on placing the sensor towards the black line, and the device waits for the Enter key to

be pressed on the break. It indicates the Blackline value in the Front Panel. The next step is to read the

background value, which is similar to the previous state of beep and the message is created on the brick,

and the result is displayed as Background surface value. Finally, the message "Complete Calibration" is

played, and a song is played announcing the end of the calibration. The read values for the black line and

the background can be used in the design of the line tracking robot, etc. In the next section, we will use

these values to build a line tracking robot.

Color/Light Sensor Applications
One of the most widely used light sensors is the line tracking robot. These types of robots have been

widely used in industry and production lines. To start designing such a robot, you first need to make the

following changes to the Basic Educator robot:

Figure 91 Color/light sensor calibration process

83

84

To build a line-following robot, we first need to define the problem clearly. One way to determine the

path of a robot is to plan the robot and measure the desired path. Nevertheless, if the route changes, the

robot program must be updated and modified. In addition, there are usually errors in measuring and

walking the distances determined by the robot. If one path is repeated several times, the other robot is not

in the desired path or does not have the necessary accuracy.

Another way to determine the route and navigate it for the robot is to follow the line embedded in the

desired path. In this case, you can be sure that the robot is always moving in the desired direction and will

never make a mistake or reduce accuracy.

Figure 92 Installing the color sensor on the educator robot

85

The line tracking robot must be able to distinguish the line drawn on the ground from the background

surface. Here we design a robot that detects the black line from the surface on which the robot moves and

follows it. Although this robot is a line-following robot, it actually follows the line.

Instead, the robot aims to follow the edge of the line (the boundary between the line and the background).

Because we are only going to use a light sensor here, if we follow the line by twisting the path, the robot

will not be able to detect the direction of the twist and, therefore, will not be able to follow the line.

However, if our goal is to follow the edge of the line, we can detect the direction of rotation of the path

and rotate the robot accordingly.

To distinguish the black line and the background, according to the previous section called Calibration, we

obtain the read values of the sensor for reflection from the black line and the background. The intensity of

light reflected from the black line is much less than the bright background surface. As we get closer to the

edge of the black line, the amount of reflection increases, and when we reach the background level, this

value reaches its maximum.

In the following algorithms, we use these values to design and program the robot.

Simple Algorithm
Different algorithms can be considered for this purpose. The most straightforward algorithm to achieve

this goal is to use a two-state algorithm. In this way, at any moment, the robot reads the measured amount

of reflection from the sensor and by comparing this value with the amount of reflection at the border of

the black line (the middle of the value read on the black line and on the background), the direction of

rotation of the robot We specify. In fact, our robot is either turning to the right or turning to the left in this

algorithm. In this way, the robot follows the line step by step.

First, we will read the sensor's output value and compare it with the reflection value at the line boundary.

To calculate the amount of reflection at the line boundary, the following equation can be used:

Figure 93 Line tracking by robot light/color sensor

Value read =

5

Value read =

50

Value read on the border = 25

Figure 94 Values read on the line and background

86

𝑏𝑜𝑟𝑑𝑒𝑟 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑖𝑛𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + (
𝑙𝑖𝑛𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

2
)

The block diagram so far works as follows:

Next, if this value is more than the value on the border, the robot will turn to the black line. If we always

want to follow the left edge of the path, this rotation will be to the right, so hold the right wheel steady

and move the left wheel. In order for this comparison process to always be repeated, we must place all of

these blocks within the Infinite While loop:

To reverse the said state, the motors must be commanded in reverse. That is, when the value read is less

than the value on the border (= not more), i.e., the robot has moved into the black line, then the left wheel

must remain fixed, and the right wheel must move so that the robot is tilted to the left.

Be sure always to use the Stop Motors block to hold the motors that is supposed to be stationary;

otherwise, the motor will repeat the previous command.

Figure 95 Obtaining the value of reflection on the boundary and comparing the output value of the sensor with it

Figure 96 Rotate right to approach the black line

Figure 97 Rotate left to distance from the black line

87

Proportional Algorithm
In this case, we want to make the robot's movement following the line smoother and more uniform.

Instead of the robot constantly rotating left or right, it follows the line and constantly changes its

direction.

For this case, we define a concept called feedback. Feedback means considering the value of the system

output (here, the value read by the sensor) and comparing it with the desired input value (here, the amount

of reflection on the line boundary). By doing this, we are aware of the robot's status at virtually any time

and can control it properly.

Let us first consider a robot that only matches itself on the line boundary. To design this robot, we need to

read the measured value of the sensor at any time and compare it with our desired value. In general,

instead of comparing these two values, their difference is used, which is also called the error signal (this

signal indicates how much error our system currently has compared to the desired state). So, with the

difference between the desired value and the measured value, we will have an understanding of the robot

deviation from the line boundary.

Now we want to apply this error signal to the robot motors so that by rotating the wheels, it adjusts itself

to the line boundary. Our goal is to set the robot on the left border of the line. If the left wheel is

connected to port B and the right wheel to port C, the robot can be adjusted to the left border of the line

by placing the steering wheel on the motors, as shown below:

In the above loop, first, according to what has been said before, the amount of reflection is calculated on

the line boundary, then the difference with the reading value of the sensor is obtained, which forms the

error signal. Here, because the error signal is not too large for the input to the motors, we use a coefficient

(1.3) to magnify it, which in the control literature is called the proportional coefficient and is usually

known by the symbol Kp. Next, we apply this magnified value to the motor on the right and its negative

value to the motor on the left. The proportionality coefficient can be changed to get the best system

behavior. But as the proportionality coefficient increases, the stability of the system decreases and the

likelihood that the robot will be able to adapt to the boundary decreases. On the other hand, with this

Figure 98 Generating an error signal with the desired input and sensor output

Figure 99 Rotation of wheels in proportion to the amount of error signal

88

coefficient being low, the matching speed of the robot also decreases. As a result, the median for this

coefficient must be obtained.

Next, we want the robot to follow the line. To do this, an interval around the desired value must be

considered as the desired interval, that as long as the value read is in this interval, the robot will continue

to move directly, and when it exits this interval, the robot will adjust itself. And then return to the interval.

If we take this desired interval at a distance of ± ten from the read value, it can be implemented in

LabVIEW that if more than ten units are more than the desired value or less than 10 units is less than the

desired value, and the robot will adjust itself. On the slow line, otherwise, the robot is in the desired range

and can continue to move straight. So, in case, the robot is not in the desired range, we have to set the

same robot as before:

And for the case that the robot is in the desired range, it is enough for the robot to continue to move

directly:

This program is one of the programs that can be implemented for the line tracking robot. If several light

sensors are used to detect the line, the robot will follow the line more accurately and faster.

Figure 100 Adjusting the robot on the edge of the line with proportional control

Figure 101 Direct movement of the robot when the robot is on the line boundary

89

CHAPTER 2 – PROBLEM SET
1. Design a program for the base robot that uses the buttons on the brick to move forward, backward, and

left and right by pressing the up, down, left, and right keys, respectively.

2. On a white surface, draw a complex path using black tape (detectable by a light sensor). Now design a

linear chase robot to follow the path well. Find the best controller coefficient by trial and error so that the

robot can follow the line best.

3. Build a combination of line tracking and wall tracking robots (install both light and ultrasonic sensors

on your robot). Design a hybrid path that includes black lines on a white surface and a wall so that the

robot can follow the path using line and wall pursuits. Now write a plan so that the robot can follow the

combined path well (the robot must check whether there is a line or a wall, then follow the path using the

written algorithm).

Exercise 1 Move the robot with the keys on the brick

Kp

Exercise 2 Follow the line by adjusting the proportional coefficient

90

4. Build and program a robot that measures the distance from the obstacle and emits a beep according to

that distance.

By changing the obstacle distance, the frequency of the generated horn changes accordingly.

5. Design a precipice detection robot that sits on a wall less table and, when it reaches the edge of the

table, detects the precipice and changes its path so that it does not fall.

Exercise 3 Produce a beep sound proportional to the obstacle distance

Exercise 4 robot routing with the help of line and wall tracking

Exercise 5 Detect the abyss and prevent the robot from falling

91

6. Design a robot that rotates and is oriented in that direction by determining the position of the robot

from the Front Panel.

7. Using the color sensor, design a robot that moves by displaying green and stops by displaying red.

Angle

Exercise 6 rotate the robot with the command value

Exercise 7 Move the robot with the green light and stop with the red light

92

Chapter 3

Advanced MINDSTORMS

Programming
3. Advanced MINDSTORMS Programming

93

INTRODUCTION
In this chapter of this book, we intend to improve our programming skills by building and programming

more advanced robots and bring the issues and challenges closer to the real goals. In each of the robots

mentioned below, first, the purpose and task of the robot are mentioned, and then the process of making

the robot is introduced and described and finally, its programming will be done.

Different methods can be used to program robots. As a result, the program described in this book is not

the only program that can be designed for these robots. After building the robot structure, it is

recommended to carefully determine the programming process and start designing the program, and then,

refer to the book to review and validate your program to get all the points in this and take the complete

advantage of the section.

94

COLOR SORTER ROBOT
In this section, our goal is to build a robot that identifies colored blocks and categorizes each block

according to its color. First, we will build this robot according to the instructions in the appendix at the

end of the book.

After completing the robot construction process, it is time to program it.

To get more familiar with this robot, we will introduce the parts and components of this robot:

1. Contact sensor: Used to return the car to its original position.

2. Cartridge: Used to transport and unload blocks, unloaded by the motor connected to port

A. The cartridge is moved on the belt by the motor connected to port D.

3. Light / Color Sensor: Used to detect the color of blocks. It is necessary to divide the steps

of robot operations into several parts: identification, decision making, movement. First, the

blocks need to be identified by the robot. As a result, the robot must recognize and store

each color block before placing it inside the robot's tank. A light/color sensor is used to

detect color. So, the way the robot works so far is that each block is first held in front of

the robot color sensor to detect the color, then this block is placed inside the robot tank. In

1

2

3

Figure 1 Overview and main parts of the color sorter robot

95

this way, the colored blocks are identified in order and placed in the robot tank in the same

way.

To start programming this robot, we do the identification step programming. For this purpose, we use

arrays to store the color of each block. Since the number of blocks may change, we also receive the

number of blocks from the user in the Front Panel window. For this purpose, we use Numeric Control:

The value entered in this numeric input will indicate the number of blocks.

In the first step, we are going to identify the blocks and store their color in the identified order in a

variable. Since the identification and storage process is to be repeated in the number of blocks, a for loop

must be used to do this. According to what is said in the topic of color / light sensor, we form the for loop

as follows:

In the next step, the values read by the color/light sensor must be stored in a variable so that these values

can be accessed later. As a result, by using an array in the Front Panel window and placing a Numeric

Indicator in it, the sensor output can be stored in this array:

Figure 2 Creating a numeric input

Figure 3 Read the color of the blocks in the specified number

96

The identification step is complete. However, since the identification process is performed without

interruption, the written program is not practical because the program performs the identification and

completes the number of blocks simultaneously. For the program to be useful, we must use the screen and

speakers to show signs and symbols to the user so that the user and the program can perform the

identification process, respectively. With a little patience and attention to what has been said, the program

can be upgraded as follows:

In this case, first, the break stops for 3 seconds, then plays the beep for 200 milliseconds and stops again

for 1 second to place the user in front of the color sensor. After recognizing the color of the block, the

break emits a sound that means the recognition is completed. At the same time as the detection, the color

code of the detected block is displayed on the brick's screen. This operation is performed until the number

of blocks is identified and the color code is stored in an array.

In the next step, we must place the blocks in the appropriate tanks in the identified order. To do this, we

must identify two items. The first case is the amount of movement of the cartridge with the help of belt

Figure 4 Storing the color sensor output in an array

Figure 5 Completing the program for reading and saving the color of blocks

97

movement. Considering that the length of the cartridge path is limited and the number of colors of the

blocks is 4, the cartridge's movement can be determined. The second case is motor A's rotation to empty a

block from inside the cartridge tank.

To determine the length of the cartridge, the D motor can be rotated a few complete turns with a simple

program to determine how many laps the cartridge travels. If we use this method, we find that by rotating

540 degrees (1.5 rpm), the cartridge travels all the way to the belt. As a result, we have to divide this path

into 4 parts so that when separating the colored blocks, each of them is emptied in a specific position.

To determine the amount of rotation of motor A to empty each block, if we pay attention to the

mechanism of this robot, we will notice that with each complete rotation of this motor, one block is

emptied from the cartridge tank. So, for each unloading of the block, it is necessary to move motor A a

complete revolution (360 degrees).

In the separation step, it is necessary first to read the color stored in the constructed array. Then,

according to the color code, call the cartridge at a suitable distance from the sensor, empty the colored

block, and return to the original location to empty the block. Prepare the next color.

The important point here is that the program must first identify and store the color and then move on to

the separation process. For this purpose, as mentioned, we use the Flat Sequence structure. In this case,

first, we put the process of color recognition and storage in the first frame and then we put the separation

process in the next frame so that these two processes can be performed sequentially and without

interfering with each other. So, we put the program that has been designed to identify and store color in a

Flat Sequence frame:

To build the separation process, a frame must be added to the Flat Sequence structure according to what

has been said, and this process must be designed in the new frame:

Figure 6 Placing the program in the first frame of the Case Structure

98

As we know, the separation process is an iterative process that must be repeated in the number of blocks

read. As a result, the best way is to use the For loop to repeat the separation operation according to the

number of blocks read:

In most automated and mechanized systems, microswitches are often used to return the machine or robot

to its original state (the reference and known mode). Although most robots or systems use stepper motors

(motors that have a certain rotation angle) and servo motors (motors that have an encoder or

potentiometer to measure angle and speed), because physical systems mostly have small errors

Microswitches may or may not be performed as expected when the machine is operating. The

microswitch is a simple switch that sits on the frame and fixed parts of the device and sends a signal to

the microcontroller when it comes in contact with the device's moving parts. In the color separation robot,

the contact sensor is used as a microswitch.

In order to be able to perform the subsequent movements of the cartridge correctly and accurately after

each movement of the cartridge, it is necessary to move it to the initial position by moving the cartridge

towards the contact sensor until the contact sensor is activated. By doing this, the small errors that exist in

the measurement or movement of the engine are eliminated, and our robot shows flawless operation.

So, the separation process is that first the color code read for the desired block is read from the stored

array. According to the color of the block, move the cart to the appropriate value, and after reaching the

Color sorting program

Figure 7 Creating a new frame to design a block separation program

Color sorting

process

Figure 8 Repeat the separation operation in the second frame

99

appropriate location, the block from the inside the tank of the cartridge is emptied. Finally, we move the

cartridge to its original position until it touches the contact sensor and stops it.

The Local Variable block can be used to access data stored in a variable or array. To create a local

variable block for a variable or array, right-click on the variable or array, select Create → Local Variable,

and then place the created block in the appropriate space. Note that the created block is set to input mode.

To make this block output mode, right-click on it and select Change to Read. In this case, by connecting

this block to the desired nodes, the data inside the variable or array can be used:

0 Degrees 180 Degrees 360 Degrees 540 Degrees

Figure 9 The amount of rotation required to separate the blocks into 4 different containers

100

Now that we have access to the values inside the array, we can read the order of the colored blocks by

reading them in order. As mentioned in the previous sections, using the Index Array block, the value of

each drive can be extracted by specifying the index. So, to access the different values stored in the array,

we use this block as follows:

Figure 10 Creating a local variable

Figure 11 Creating a local variable terminal

101

Since each code represents a specific color, we have four colors, blue, green, yellow and red, which have

codes 2, 3, 4 and 5, respectively. So, we put the items in the Case Structure in proportion to these

numbers as follows:

Inside each case, the operation of moving the cart to the desired point, emptying the block and returning

the cart to its original location must be performed. The only difference between these operations for

different colors (different cases) is the D motor's rotation to move the cartridge, which was described in

the previous section. As a result, the program in the Case Structure section is designed as follows:

Figure 12 Read the color codes stored in the array

Figure 13 Creating different cases for recognizing and separating colored blocks

102

For better performance of this robot, we have set a delay of 1 second at the beginning of each separation

operation. For other cases, only the amount of motor D rotation changes. For others, the program changes

as follows:

Figure 14 Program design for moving the cartridge to the desired point

103

Now the design of the robot program is completed, and the robot first recognizes the colored blocks and

then separates them in their proper place. The final program is as follows:

Figure 15 Changing the amount of rotation of the D motor according to the color read in each case

104

Note that each of the steps mentioned above can be done in different ways, and it is not necessary to be

done as described, and on the other hand, by changing the program and even the structure of the robot, its

performance can be improved.

Color Sorter Robot – Problem Set

1. To further practice programming, change the robot so that the number of blocks is not

known in advance, and with the push of a button, the detection operation is stopped, and

the separation operation begins.

2. Design the robot program so that when separating the blocks, it does not return to its

original position each time and goes to the next block position. Is the robot still accurate

enough to perform the separation operation?

3. Change the structure of the robot so that it first puts all the blocks in the tank and then reads

the color of the last block before separating the blocks and empties it in the appropriate

position.

Figure 16 Complete program of color sorter robot

105

ROBOT ARM

One of the most famous and widely used machines in the robotics industry and the world is the robotic

arm. Robotic arms are made up of several limbs, which are moved and controlled by hinged or sliding

joints relative to each other using various actuators. Also, various sensors are used to control the

movement of the arms, and their members do not collide with each other and cause damage.

Robotic arms can consist of two types of series or parallel mechanisms. The series mechanism is a

mechanism in which the endpoint of the robot (the toe of the robotic arm) is connected to the ground from

only one path. But a parallel mechanism controls the robot's endpoint from multiple paths.

In this section, we want to build and program a robotic arm with two degrees of freedom. The degree of

freedom of a mechanism is the number of independent coordinates to describe the position of all points in

that mechanism. In other words, the degree of freedom refers to the number of different movements that a

mechanism performs along with different directions and around different axes.

The arm discussed in this section is a series of mechanisms and has two degrees of freedom. There is also

a gripper at the end that is used to lift and place objects. As a result, 3 motors or actuators are used in this

robot. Also, two microswitches are used to control and stop each member.

As mentioned in the section on the color separation robot, a microswitch is used to return the robot to its

original position. In this robotic arm, we use two sensors as microswitches: a contact sensor (such as a

color separation robot) and a light sensor. In the light sensor, the amount of proximity to the initial

Figure 17 Robotic arm

106

position can be obtained according to the light received from the sensor. It is also possible to detect

approaching the initial position by color recognition.

First, build the robotic arm according to the instructions in the appendix at the end of the book.

As you can see during the construction of this robot, the two contact and light sensors are placed on it in

such a way as to detect the position of the robot in a certain position and prevent it from moving further.

In the programming process, we use these two sensors to restrict the robot's movements, and at the

beginning, we return the robot to its original position.

The first step is to determine how each member of the robot will reach the initial conditions. If we show

the coordinate axis corresponding to the arm as shown below, our robot rotates around the Z and Y

directions. If we want to be more precise, motor C rotates around the Z-axis, and motor B rotates around

the Y-axis.

By paying attention to the robot's structure, by rotating the C motor in a particular position, the contact

sensor is compressed, which indicates that the motor has reached the initial position. Also, by rotating

motor A, the link connected to it approaches the light sensor, which can be used to determine the initial

position of this motor by using the sensor output.

So, in the first step, we design a program to return the robot to its original position and restrict its

movements by sensors.

Z-axis

(Motor C)

Y-

axis

(Motor B)

Gripper

(Motor A)

Figure 18 Robotic arm movement on axes

Z
Y

X

107

Controlling Z-axis Rotation
To start programming this robot, we start with engine C. We know that with the rotation of the C motor,

the second link and the robot gripper rotate around the z-axis. In this case, by rotating robot C, the tab in

the path of the contact sensor will cause the sensor button to be pressed, and the motor will stop moving.

For the robot to always start from this position, we use the information obtained from the contact sensor.

Also, if the robot continues to move after pressing the contact sensor, it will cause damage to the engine

and other parts. Therefore, it is necessary to stop the engine if the contact sensor is compressed and not to

allow further movement.

To return the robot to its original position, we must move the C motor in the right direction to compress

the contact sensor. After the contact sensor is compressed, we stop the engine. By running this part of the

program at the beginning of the robot start-up process, we return the robot to its original position from

any position.

Now we come to the part of the C motor control. Suppose we use the keys on the break to move the robot.

In this case, to control the C motor, two keys are needed to move it in two directions. For example, we

use the left and right keys to move this engine. In this case, according to the programs written in the

previous sections, the following two keys can be used to move the C motor as follows.

If none of the left and right buttons are pressed, the C motor will remain stationary:

Figure 19 Returning motor C to its original position

108

If the right key is pressed, if the call sensor is not activated (motor C has not reached the end of its

working space), the motor will move clockwise:

And if the contact sensor is pressed, the C motor will stop and will no longer move in this direction:

Figure 20 Moving the C motor with the keys on the brick

Figure 21 Moving the C motor towards the touch sensor by pressing the right key

109

However, if the left button is pressed, the C motor will start moving counterclockwise. There is a point in

this that needs to be examined better than carefully. As is clear from the robot's structure, the C motor can

move away from the contact sensor to some extent, so if the motor rotates too much, it may engage and

damage the robot components and connections. If we assume that the absolute limit of the robot's rotation

is equal to half the rotation around the z-axis, we must find the amount of rotation of the C motor to reach

this position. Using the encoder in each engine, its position can be obtained. For this purpose, we use the

Motor Status block. Also, in order to always refer to the initial position of the C motor (the position in

which the contact sensor is pressed) as a reference, after bringing the C motor to the initial position, reset

the encoder using the Reset Encoders block to zero this position. Show. In this case, by rotating motor C,

we can get the distance from the initial position by reading the value of the encoder.

If we consider the final limit of rotation of motor C in the counterclockwise direction to be 600 degrees

(approximately half a turn of the movement space of the robot arm), by pressing the left button until the

number read from the encoder exceeds 600 degrees, motor C in the direction Moves counterclockwise:

Figure 22 Motor C stopped when the touch sensor is pressed

110

If the value of the engine encoder exceeds 600 degrees, the engine will stop:

Now that the program control section is complete, we need to put it in an infinite loop and continue with

the previous program, which returns the C engine to its original position. Also do not forget that after

reaching the initial position, it is necessary to reset the value of the engine encoder:

Figure 23 Moving the C motor to 600 degrees away from the touch sensor

Figure 24 Stopping the C motor if it reaches 600 degrees

111

If the above conditions are observed by running this program, the motor is first returned to the initial

position and then by pressing the left and right buttons, and the C motor can be controlled.

Do not forget to save this program with the appropriate name and in the specified path to use this program

in the future. For example, here, we save this program as arm-z-axi.vi in a specific place.

Controlling Y-axis Rotation
The rotation around the Y-axis is somewhat similar to the rotation around the Z-axis, except that in this

axis, instead of the contact sensor, the light sensor is used as a microswitch. As before, we first design the

Y-axis motor motion program, i.e., the B-motor to the initial position, and then control it.

To bring the B motor to the initial position, the motor must be moved in the appropriate direction until the

tab in front of the light sensor approaches the sensor eye, and the sensor can see it. To do this, use the

Reflected mode in the light sensor to read the proximity of the tab to the eye. With a bit of research, it can

be seen that whenever the tongue is close to the eye, the value read in Reflected mode will be

approximately more significant than 35. As a result, we have to bring the engine close to the sensor so

that the real value exceeds 35.

By running this program, motor B moves the arm upwards and stops it when it reaches its maximum (the

tab approaches the light sensor). Note that if the engine speed is high, it may cause damage or

malfunction of this program, so the engine speed should not be selected as a large number. Here we have

considered the engine speed to be 20 and in the negative direction. Also, note that the light sensor is

connected to port 3, and the port number connected to the light sensor must be specified in the Sensor

block.

Figure 25 Completing the program by placing it in the infinite loop

Figure 26 Reading the amount of light sensor to stop the motor B

112

In the next step, we want to write a program that can control the movement of motor B with the up and

down keys on the break. The physical limitations of the arm must also be considered. Depending on the

orientation of the break relative to the robot, we select the button at the bottom of the block to move

motor B towards the light sensor and the button at the top of the break to move the reverse. With two

Case Structures together, we can create this behavior. For the case where the down button is pressed, and

the arm is not yet close to the light sensor, we have:

If the arm reaches the end of its movement (the tab approaches the light sensor), then motor B must be

stopped:

Figure 27 Moving motor B towards the light sensor

113

For cases where the up button is pressed (as a result, the down button is not pressed), the engine moves in

the positive direction:

The engine must be stopped if none of the up and down buttons are pressed:

Figure 28 Engine B stops when it has reached the light sensor

Figure 29 Motor B moving away from the light sensor

114

Finally, to control and move the Y-axis, we use Flat Sequence and put the first and second parts of the

program together, respectively:

Do not forget to save this file with the appropriate name (for example, arm-y-axis) for later use.

Gripper Motion
Now that the arm movements are designed around the two axes, Y and Z, it is necessary for the gripper to

act in such a way that it performs the task of picking and placing objects well. Grippers or similar

mechanisms are widely used in industrial robotic arms in factories and production lines. The gripper

Figure 30 Motor B stopped if the up and down keys are not pressed

Figure 31 Completion of motor movement B related to the movement of the Y axis

115

mechanism can take many forms, but the gripper used here rotates a motor to bring the two gripper jaws

closer together and grasp the body in between.

By paying close attention to the gripper mechanism, we will understand that it is necessary to change the

direction of the engine movement for each time it is opened and closed. That is, assuming the gripper is

closed in the initial state, with the motor rotating approximately 180 degrees, the gripper will first open

and then close again. Also, since we can not specify the position for the gripper encoder to be open or

closed (because this position will change according to the different dimensions of the captured objects),

so it is difficult to find a number as the gripper open or closed position. The best way is to rotate the

physical gripper when necessary to rotate it for a certain amount of time (for example, 1 second) in a

certain direction (change the direction of rotation with each movement of the gripper) and with a

particular force.

Suppose we want to open and close the gripper every time we press the middle key on the break, and as a

result, take the body. So, in a new VI, we create a Case Structure with the middle key condition:

As mentioned, each time you press the middle key, motor A must move in the right direction for 1

second.

Figure 32 Reading the value of the middle key of the break

116

However, as the saying goes, the motor cannot always move in one direction and open and close the

gripper. Therefore, it is necessary to change the direction of the engine movement after each time the

middle button is pressed so that the motor movement can be opened and closed the next time. To do this,

we use a variable called Dir. First, we put the initial value of 1 in this variable and multiply a negative

sign each time the engine moves. As a result, if we use this variable to determine the direction of the

motor's rotation, the motor's direction will change each time the button is pressed.

To define a variable, as used in the previous sections, right-click in the Front Panel window and place a

Numeric Indicator in your program from the Numeric section. Then rename this numeric index to "Dir."

To write in this variable in the Block Diagram window, right-click on the block corresponding to the

numeric index and select Create → Local Variable from the menu that appears. If you want to read the

value inside this variable, right-click on the created Local Variable block and select Change to read.

So, to change the direction of the motor each time it rotates, after the middle key is pressed and we move

motor B, we change the variable sign to "Dir." As a result, our program is like the one below.

Note that before the program enters the while loop, we assigned a value of 1 to the Dir variable.

Figure 33 Gripper’s motor moving in the right direction

Figure 34 Changing the rotation of the gripper’s movement with each press of the middle key

117

Finally, we save this program with the appropriate name (here as "arm-gripper").

Final Program of Robot Arm
So far, we have programmed the three degrees of freedom of the robotic arm, but each of the robot's

movements is programmed separately and independently. This means that different movements cannot be

commanded to the arm at the same time.

Since each of the 3 programs designed in the recent episodes are independent and complete, we only need

to run them simultaneously. Because Break is only able to run one program at a time, another program

must be designed in the lab to cover all three robot movements. To do this, create a new VI (press Ctrl +

N in the application window). To import a VI into your application, right-click in the Block Diagram

window and select Select a VI from the Functions menu. In the window that opens, you need to select the

desired VI file. We add to our new program the 3 programs created in the previous sections, which we

saved as "arm-y-axis", "arm-z-axis," and "arm-gripper", respectively.

Because there is an infinite while loop in each VIs, there is no need for a while loop in the final program.

Now by uploading and running this program on your robot, first, the robot axes return to their original

position (so-called home), and then you can use the left and right keys to rotate the robot around the y

axis and the up and down keys to rotate the robot around the z-axis. Give. Also, by pressing the middle

key of the break, the gripper opens and closes, and if an object is in that position, the gripper takes it.

Robot Arm – Problem Set

1. Program the robotic arm to pick up objects at a specific point and move them to another

point in a specific direction.

2. Modify programs designed to be able to control the robotic arm using the Front Panel.

Figure 34 Adding built-in VIs to the new VI

